Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.541
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565287

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Estudo de Associação Genômica Ampla , Transcriptoma/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Integrina beta1
2.
Sci Rep ; 14(1): 7813, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565862

RESUMO

Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Doenças Metabólicas , Perciformes , Animais , Peixe-Zebra , Adenosina , Cirrose Hepática , Progressão da Doença , Trifosfato de Adenosina
3.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573193

RESUMO

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Humanos , Catalase , NAD , Citocromo P-450 CYP2E1 , Peróxido de Hidrogênio , Etanol , Ácidos Graxos
4.
Front Immunol ; 15: 1243526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596669

RESUMO

Background: Circulating immune cells have gained interest as biomarkers of hepatic steatosis. Data on the relationships between immune cell subsets and early-stage steatosis in population-based cohorts are limited. Methods: This study included 1,944 asymptomatic participants of the Multi-Ethnic Study of Atherosclerosis (MESA) with immune cell phenotyping and computed tomography measures of liver fat. Participants with heavy alcohol use were excluded. A liver-to-spleen ratio Hounsfield units (HU) <1.0 and liver attenuation <40 HU were used to diagnose liver fat presence and >30% liver fat content, respectively. Logistic regression estimated cross-sectional associations of immune cell subsets with liver fat parameters adjusted for risk factors. We hypothesized that higher proportions of non-classical monocytes, Th1, Th17, and memory CD4+ T cells, and lower proportions of classical monocytes and naive CD4+ T cells, were associated with liver fat. Exploratory analyses evaluated additional immune cell phenotypes (n = 19). Results: None of the hypothesized cells were associated with presence of liver fat. Higher memory CD4+ T cells were associated with >30% liver fat content, but this was not significant after correction for multiple hypothesis testing (odds ratio (OR): 1.31, 95% confidence interval (CI): 1.03, 1.66). In exploratory analyses unadjusted for multiple testing, higher proportions of CD8+CD57+ T cells were associated with liver fat presence (OR: 1.21, 95% CI: 1.02, 1.44) and >30% liver fat content (OR: 1.34, 95% CI: 1.07, 1.69). Conclusions: Higher circulating memory CD4+ T cells may reflect liver fat severity. CD8+CD57+ cells were associated with liver fat presence and severity, but replication of findings is required.


Assuntos
Aterosclerose , Fígado Gorduroso , Humanos , Monócitos , Estudos Transversais , Fígado Gorduroso/diagnóstico , Subpopulações de Linfócitos T , Biomarcadores
5.
Medicine (Baltimore) ; 103(16): e37846, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640324

RESUMO

The current study aimed to investigate the potential role of astragaloside IV (AS-IV) in improving cellular lipid deposition and its underlying mechanism. A fatty liver cell model was established by treating hepatoma cells with palmitic acid. AS-IV and SC79 were used for treatment. Oil Red O staining was applied to detect intracellular lipid deposition, and transmission electron microscopy was utilized to assess autophagosome formation. Immunofluorescence double staining was applied to determine microtubule-associated proteins 1A/1B light chain 3 (LC3) expression. Western blot analysis was performed to detect the expression of LC3, prostacyclin, Beclin-1, V-akt murine thymoma viral oncogene homolog (Akt), phosphorylated Akt, mTOR, and phosphorylated mTOR. Oil Red O staining revealed that AS-IV reduced intracellular lipid accumulation. Further, it increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in the cells. It also reduced the phosphorylation levels of Akt and mTOR and the levels of prostacyclin. However, the effects of AS-IV decreased with SC79 treatment. In addition, LC3B + BODIPY493/503 fluorescence double staining showed that AS-IV reduced intracellular lipid deposition levels by enhancing autophagy. AS-IV can reduce lipid aggregation in fatty liver cells, which can be related to enhanced hepatocyte autophagy by inhibiting the Akt/mTOR signaling pathway.


Assuntos
Compostos Azo , Fígado Gorduroso , Proteínas Proto-Oncogênicas c-akt , Saponinas , Triterpenos , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Beclina-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Prostaglandinas I , Fígado Gorduroso/tratamento farmacológico , Lipídeos
6.
J Orthop Surg Res ; 19(1): 250, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643133

RESUMO

OBJECTIVE: In this study, we investigated the relationship between sarcopenia and fatty liver in middle-aged and elderly patients diagnosed with type 2 diabetes mellitus (T2DM) to provide a theoretical foundation for the prevention and treatment of sarcopenia. METHODS: A total of 282 patients diagnosed with T2DM aged 50 and older and were admitted to the Endocrinology Department of Xin Medical University First Affiliated Hospital between December 2021 and February 2023, were selected. Body mass index (BMI), and limb and trunk muscle mass of the patients were measured, and data were collected. Patients were grouped based on the sarcopenia diagnostic criteria. All study participants underwent the same physical examinations and laboratory tests. The relationship between the onset of sarcopenia and fatty liver in middle-aged and elderly patients diagnosed with T2DM was then investigated using statistical analysis. RESULTS: Comparing the sarcopenia group to the non-sarcopenia group revealed statistically significant variations in gender, BMI, fatty liver prevalence rate, uric acid (UA), alanine aminotransferase (ALT), blood glucose, blood lipid associated indicators, and limb skeletal muscle content. There were, however, no statistically significant differences in age, disease duration, hypertension, smoking, or alcohol intake. There was a positive correlation between BMI, UA, fasting c-peptide, and Appendicular Skeletal Muscle Index (ASMI). Higher levels of BMI, ASMI, and UA were identified as protective variables against sarcopenia by multifactorial logistic regression analysis. CONCLUSION: Higher levels of BMI, ASMI, and UA can greatly reduce skeletal muscle atrophy in patients with T2DM. Patients with a fatty liver may be less vulnerable to sarcopenia. There is little evidence, however, that a fatty liver works as a preventive factor against sarcopenia.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Sarcopenia , Idoso , Pessoa de Meia-Idade , Humanos , Diabetes Mellitus Tipo 2/complicações , Sarcopenia/complicações , Músculo Esquelético , Lipídeos
9.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557494

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 40% of the global adult population and may progress to metabolic dysfunction-associated steatohepatitis (MASH), and MASH-associated liver fibrosis and cirrhosis. Despite numerous studies unraveling the mechanism of hepatic fibrogenesis, there are still no approved antifibrotic therapies. The development of MASLD and liver fibrosis results from complex cell-cell interactions that often initiate within hepatocytes but remain incompletely understood. In this issue of the JCI, Yan and colleagues describe an ATF3/HES1/CEBPA/OPN pathway that links hepatocyte signals to fibrogenic activation of hepatic stellate cells and may provide new perspectives on therapeutic options for MASLD-induced liver fibrosis.


Assuntos
Fígado Gorduroso , Cirrose Hepática , Adulto , Humanos , Hepatócitos , Células Estreladas do Fígado , Comunicação Celular
10.
Eur Rev Med Pharmacol Sci ; 28(6): 2288-2296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567591

RESUMO

OBJECTIVE: Based on data from the National Health and Nutrition Examination Survey (NHANES), this study aimed to investigate the effect of high levels of systemic immune inflammation (SII) on hepatic steatosis by conducting a population-based cross-sectional survey of research subjects. SUBJECTS AND METHODS: The population included 5,119 participants from the NHANES 2017-2020 cycle who were selected as the research subjects. We used (neutrophil count × platelet count)/lymphocyte count as the formula for calculating SII. The formula for calculating HSI levels was 8 × the ratio of [alanine aminotransferase (ALT) / aspartate aminotransferase (AST)] + body mass index (BMI) + 2 (with diabetes mellitus) + 2 (for women). HSI=36 was taken as the cut-off value for evaluating hepatic steatosis. Multivariate logistic regression analysis was used to evaluate the relationship between hepatic steatosis and SII in different models. Subgroup analysis was used to explore the relationship between different subgroups of SII and hepatic steatosis. Interaction analyses were used to assess the heterogeneity. RESULTS: Out of a total of 5,119 participants, hepatic steatosis was observed in 2,742 individuals. Multivariate logistic regression showed that the independent risk factor for hepatic steatosis was a high SII level (OR=1.33, 95% CI: 1.11-1.49, p<0.05). After adjusting for differences in BMI and HSI using propensity score matching (PSM), bariatric surgery also reduced SII risk. CONCLUSIONS: There is a correlation between SII and hepatic steatosis, and bariatric surgery can effectively reduce SII risk in the hepatic steatosis population.


Assuntos
Fígado Gorduroso , Inflamação , Humanos , Feminino , Estudos Transversais , Inquéritos Nutricionais , Fatores de Risco
11.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612483

RESUMO

Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Biologia
12.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612538

RESUMO

Excessive alcohol intake will aggravate the health risk between the liver and intestine and affect the multi-directional information exchange of metabolites between host cells and microbial communities. Because of the side effects of clinical drugs, people tend to explore the intervention value of natural drugs on diseases. As a flavor substance, spices have been proven to have medicinal value, but they are still rare in treating hepatointestinal diseases caused by alcohol. This paper summarized the metabolic transformation of alcohol in the liver and intestine and summarized the potential value of various perfume active substances in improving liver and intestine diseases caused by alcohol. It is also found that bioactive substances in spices can exert antioxidant activity in the liver and intestine environment and reduce the oxidative stress caused by diseases. These substances can interfere with fatty acid synthesis, promote sugar and lipid metabolism, and reduce liver injury caused by steatosis. They can effectively regulate the balance of intestinal flora, promote the production of SCFAs, and restore the intestinal microenvironment.


Assuntos
Etanol , Fígado Gorduroso , Humanos , Intestinos , Especiarias
13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612556

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Animais , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Antioxidantes , Inflamação
14.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612640

RESUMO

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças do Sistema Digestório , Fígado Gorduroso , Hepatopatias , Doenças Metabólicas , Humanos , Receptores de Glucagon , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptores Acoplados a Proteínas G
15.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613063

RESUMO

INTRODUCTION: Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD) is a common cause of chronic liver disease. This review assessed the efficacy of a Low-Calorie Diet (LCD) on liver health and body weight in people living with MASLD and obesity. METHODS: The study was registered with PROSPERO (CRD42021296501), and a literature search was conducted using multiple databases. The key inclusion criteria were randomised controlled trials or cohort studies, obesity/overweight and MASLD. Two authors screened abstracts, reviewed full texts and performed data extraction and quality assessment. The primary outcome was the change in the serum ALT, and secondary outcomes included the changes in the serum AST, intrahepatic lipid content (IHL), quantified non-invasively via MRI/MRS, and body weight. RESULTS: Fifteen studies were included. The LCD reduced body weight by 9.1 kg versus the control (95%CI: -12.4, -5.8) but not serum ALT (-5.9 IU/L, -13.9, 2.0). Total Dietary Replacement (TDR) reduced IHL by -9.1% vs. the control (-15.6%, -2.6%). The Mediterranean-LCD for ≥12 months reduced ALT (-4.1 IU/L, -7.6, -0.5) and for 24 months reduced liver stiffness versus other LCDs. The Green-Mediterranean-LCD reduced IHL, independent of body weight. Limited studies assessed those of Black or Asian ethnicity, and there was heterogeneity in the methods assessing the liver fat content and fibrosis. CONCLUSIONS: In people with MASLD and obesity, an LCD intervention reduces IHL and body weight. Trials should focus on the recruitment of Black and Asian ethnicity participants.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Adulto , Humanos , Sobrepeso/complicações , Peso Corporal , Obesidade/complicações
16.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619429

RESUMO

BACKGROUND: Mutations in the gene MTARC1 (mitochondrial amidoxime-reducing component 1) protect carriers from metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. MTARC1 encodes the mARC1 enzyme, which is localized to the mitochondria and has no known MASH-relevant molecular function. Our studies aimed to expand on the published human genetic mARC1 data and to observe the molecular effects of mARC1 modulation in preclinical MASH models. METHODS AND RESULTS: We identified a novel human structural variant deletion in MTARC1, which is associated with various biomarkers of liver health, including alanine aminotransferase levels. Phenome-wide Mendelian Randomization analyses additionally identified novel putatively causal associations between MTARC1 expression, and esophageal varices and cardiorespiratory traits. We observed that protective MTARC1 variants decreased protein accumulation in in vitro overexpression systems and used genetic tools to study mARC1 depletion in relevant human and mouse systems. Hepatocyte mARC1 knockdown in murine MASH models reduced body weight, liver steatosis, oxidative stress, cell death, and fibrogenesis markers. mARC1 siRNA treatment and overexpression modulated lipid accumulation and cell death consistently in primary human hepatocytes, hepatocyte cell lines, and primary human adipocytes. mARC1 depletion affected the accumulation of distinct lipid species and the expression of inflammatory and mitochondrial pathway genes/proteins in both in vitro and in vivo models. CONCLUSIONS: Depleting hepatocyte mARC1 improved metabolic dysfunction-associated steatotic liver disease-related outcomes. Given the functional role of mARC1 in human adipocyte lipid accumulation, systemic targeting of mARC1 should be considered when designing mARC1 therapies. Our data point to plasma lipid biomarkers predictive of mARC1 abundance, such as Ceramide 22:1. We propose future areas of study to describe the precise molecular function of mARC1, including lipid trafficking and subcellular location within or around the mitochondria and endoplasmic reticulum.


Assuntos
Fígado Gorduroso , Hepatócitos , Animais , Humanos , Camundongos , Adipócitos , Biomarcadores , Ceramidas , Análise da Randomização Mendeliana
17.
PLoS One ; 19(4): e0299507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625981

RESUMO

BACKGROUND AND AIMS: Metabolic dysfunction associated steatotic liver disease (MASLD) increases the risk of incident chronic kidney disease (CKD). However, the relative risk of CKD associated with increasing hepatic fibrosis, and consequent mortality risk, remains underexplored in real-world cohorts. In this study, we sought to establish whether hepatic fibrosis is associated with increased CKD risk and explore differences in mortality risk in a cohort of people living with MASLD, contingent on liver fibrosis and CKD status. METHODS: This was an observational study of people who underwent routine liver function testing in Tayside, Scotland. MASLD was defined as: elevated ALT (>30 U/L) or GGT (>73 U/L); presence of diabetes, and/or hypertension, and/or obesity; weekly alcohol consumption <14 units (112g (+/-8g) alcohol); and negative screen for other aetiologies. Data was collected from digital health records. We used log-binomial models to quantify the risk of CKD among those with and without fibrosis, and Cox regression models to estimate differences in mortality risk dependent on fibrosis and CKD. RESULTS: In our cohort (n = 2,046), 1,448 (70.8%) people had MASLD without fibrosis and 598 (29.2%) with fibrosis; 161 (11.1%) and 117 (19.6%) respectively also had CKD. After excluding individuals with structural, autoimmune, or malignant CKD (n = 22), liver fibrosis (n = 593; 18.9% with CKD) was associated with increased CKD risk (aRR = 1.31, 1.04-1.64, p = 0.021). Increased mortality risk was observed for those with liver fibrosis (aHR = 2.30, 1.49-3.56, p = <0.001) and was higher again among people with both fibrosis and CKD (aHR = 5.07, 3.07-8.39, p = <0.014). CONCLUSIONS: Liver fibrosis was an independent risk factor for CKD in this cohort of people living with MASLD. Furthermore, those with MASLD with liver fibrosis had higher risk for mortality and this risk was further elevated among those with co-morbid CKD. Given the increased risk of CKD, and consequent mortality risk, among people living with MASLD fibrosis, renal function screening should be considered within liver health surveillance programmes and guidelines.


Assuntos
Fígado Gorduroso , Insuficiência Renal Crônica , Humanos , Cirrose Hepática/complicações , Etanol , Insuficiência Renal Crônica/complicações
18.
Physiol Rep ; 12(8): e15993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627215

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health issue with a worldwide prevalence of 30%-32%. In animal models, voluntary exercise may be an alternative to forced physical activity, avoiding stress, potential injuries, and being logistically simpler. Here, we assessed voluntary exercise (Vex) in Sprague-Dawley rats fed a high-fat, high-cholesterol diet for 18 weeks to induce MASLD. We quantified workload (speed and distance) using exercise wheels and evaluated energy expenditure using calorimetric cages. MASLD progression was assessed using circulating and hepatic biochemical and gene markers of steatosis, inflammation, and fibrosis. The animals ran an average of 301 km during the study period, with the average daily distance peaking at 4937 m/day during Weeks 3-4 before decreasing to 757 m/day by the end of the study. Rats exposed to Vex showed no improvement in any of the MASLD-associated features, such as steatosis, inflammation, or fibrosis. Rats exposed to Vex exhibited a higher total energy expenditure during the night phase (+0.35 kcal/h; p = 0.003) without resulting in any effect on body composition. We conclude that, in our experimental conditions, Vex failed to prevent MASLD progression in male Sprague-Dawley rats exposed to a high-fat high-cholesterol diet for 18 weeks.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fígado Gorduroso/metabolismo , Dieta Hiperlipídica/efeitos adversos , Colesterol , Inflamação , Exercício Físico , Fibrose , Progressão da Doença
19.
BMC Genomics ; 25(1): 374, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627644

RESUMO

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS: In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS: Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Dieta com Restrição de Proteínas , Fígado Gorduroso , Transtornos do Crescimento , Comunicação Interventricular , Animais , Feminino , Histonas/metabolismo , Galinhas/genética , Galinhas/metabolismo , Epigênese Genética , Fígado Gorduroso/genética , Fígado Gorduroso/veterinária , Hemorragia/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...